Как защитить себя и свой дом от электромагнитного излучения. Средства экранирования электромагнитных полей

А.И. Ольшанский

Современные способы защиты от электромагнитных полей.

Перспективные экранирующие материалы класса «Новафор».

ООО «ЛАОТЭК», АНО «Городской медико-социальный Центр».

Коды государственного рубрикатора научно-технической информации (ГРНТИ) статьи: 76.33.33 Коммунальная гигиена и гигиена окружающей среды. 86.33 Охрана труда по источникам опасности и методам защиты. 87.55.33 Электрические и магнитные поля и излучения. Исследование полей и излучений. Методы и средства борьбы.

Обзор

Экранирование электромагнитных полей (ЭМП) является актуальной задачей защиты здоровья, информационной безопасности, электромагнитной совместимости и электромагнитной экологии жилых помещений, защиты помещений для серверов и/или электронного оборудования.

Быстрое развитие телевидения и радиосвязи, мобильной сотовой связи, Интернета - вызывает все большее "загрязнение" окружающей среды. Весомый вклад вносят также бытовые электроприборы, электротранспорт и, безусловно, компьютеры. Наведенные электромагнитные поля все чаще вызывают сбои в работе ИТ-оборудования, влияют на качество связи,. Одновременно с этим, существует реальная возможность, с помощью специальной аппаратуры используя побочные электромагнитные излучения и наводки (т.н. ПЕМИН ) электронных приборов, снимать конфиденциальную информацию с серверов, вмешиваться в работу информационных систем, прослушивать переговоры или уничтожать данные на электронных носителях умышленно, а также по неосторожности.

Единственным физически обоснованным и надежным способом защиты от данных видов угроз является специальное экранирование компьютерных помещений или установка электронной техники в экранированные кабины. При кажущейся внешней простоте, данное решение позволяет, при учете особенностей распространения радиоволн и квалифицированном исполнении экраносооружения, добиться существенного ослабления фонового сигнала. Защитное экранирование помещений позволяет, кроме того, исключить вредное влияние на человека сильных электромагнитных полей от различных радиопередающих устройств и других средств электромагнитного излучения.

Мы углубленно изучаем новые научно-практические способы существенного ослабления воздействия электромагнитных полей, создаваемых какими-либо источниками, как на человека, так и на радиоэлектронные приборы. Традиционно для создания электромагнитного экрана или экранированного объема чаще применяются материалы в виде стальных, медных, алюминиевых листов, фольги. В последние годы применяются более современные гибкие композитные материалы в виде сетки, ткани или пленки. Например, запатентованные нами универсальные композитные материалы класса «Новафор» .

Экранирование технических средств обработки информации и помещений, в которых происходит прием, передача и обработка конфиденциальной информации, позволяет снизить уровни электромагнитных излучений до заданных величин.

Мы разрабатываем полный диапазон специального оборудования, такого как экранированные двери и окна , комнатные экраны и сборно-разборные экранированные кабины , электрические фильтры , фильтры сигнализации , вентиляционные фильтры , а также экранирующие материалы по линии ЭМС .

Данная тема весьма многоплановая, но, прежде всего, экранирование ЭМИ - это основа экологической безопасности и одно из самых действенных средств пассивной защиты объекта от утечки информации по техническим каналам.

Применение качественных электромагнитных экранов, например, на основе композиционного материала класса Новафор позволяет решать задачи эффективной защиты по электрической и магнитной составляющим поля объектов обработки, приема-передачи конфиденциальной информации; отдельных технических средств и компонентов вычислительной техники; приемной и радиопередающей техники; технических средств (ТС), имеющих повышенные уровни электромагнитных излучений; ТС, к которым предъявляются жесткие требования по уровням взаимных помех; ТС, создающих проблемы электромагнитной совместимости и проблемы индустриальных помех; задачи защиты персонала от повышенного уровня электромагнитных полей; задачи обеспечения надлежащей экологической обстановки вокруг работающих электроустановок и СВЧ-устройств и т.д.

Потребность в применении качественных электромагнитных экранов возникает практически во всех отраслях промышленности и у большого количества субъектов производственно-хозяйственного комплекса. В области информационной безопасности также существуют задачи, связанные с экранированием ЭМИ.

Так как защита информации от утечки - проблема, требующая постоянного внимания и своевременного качественного разрешения независимо от формы собственности предприятия или финансового и социального положения человека, на страницах специализированных изданий ей уделяется особое внимание. Однако большинство авторов статей, касаясь средств защиты информации от утечки по техническим каналам (средств защиты технических средств обработки закрытой информации, а также помещений, в которых обрабатывается такая информация), рассматривает исключительно активные методы защиты, которые заключаются в сокрытии информативных сигналов за счет шумовой или заградительной помехи с помощью генераторов шума или постановщиков помех.

В связи с бурным развитием в мире новейших технологий и производств технических средств различного назначения, включая средства приема-передачи и обработки информации, активные технические средства защиты информации быстро устаревают. При этом более мощная современная техника не может не наносить урон здоровью своих пользователей.

В сложившихся условиях нам представляется наиболее эффективным, долговечным, экологически чистым и абсолютно безвредным для пользователей использование новых отечественных пассивных средств защиты информации от утечки по техническим каналам, а именно - экранирование электромагнитных излучений, создание систем экранирования помещений, в которых обрабатывается закрытая информация, и систем экранирования технических средств обработки закрытой информации и их компонентов.

Так, например, экранирование помещений, в которых присутствуют элементы телекоммуникационных сетей, системы информационного обеспечения, контроля и управления, отдельные технические средства, а также помещений, используемых для приема, обработки и передачи конфиденциальной информации, позволит:

Защитить объект от несанкционированного съема информации по радиоканалу, каналу ПЭМИН, электроакустическому каналу;

Усилить защиту объекта от специально организованных, с применением различных технических средств, каналов утечки информации;

Устранить выход за пределы помещения информативных электромагнитных излучений и наводок излучающих компонентов оргтехники, оборудования и интерьера помещения;

Защитить находящихся в помещении пользователей, оргтехнику, радиоэлектронное оборудование от поражающего воздействия оружия направленной энергии.

Обеспечить биологическую защиту находящихся в помещении пользователей от воздействия повышенного уровня электромагнитных полей и направленных электромагнитных излучений;

Многозначность и сложность задач, существующих в области информационной безопасности, требуют применения многофункциональных качественных экранированных объемов и конструкций, предназначенных для работы в широком диапазоне частот с высоким коэффициентом экранирования и предусматривающих различные варианты использования.

Для производства таких экранированных объемов разработаны новые высокоэффективные радиоэкранирующие материалы: легкие, гибкие, удобные в монтаже. В том числе и материалы класса «Новафор». Из них могут изготавливаться рулонные гибкие экраны; рулонные тканые экраны; рулонные магнитные экраны; плитные оптически прозрачные экраны; гибкие оптически прозрачные экраны; рулонные экраны для защиты кабелей; экраны для защиты элементов ПК и РЭП.

Например, вес 1 кв.м. мягких электромагнитных экранов - от 0,2 кг; толщина мягкого электромагнитного экрана -от 0,8 мм. Вес 1 кв.м. рулонного оптически прозрачного экрана - от 0,5 кг; толщина рулонного оптически прозрачного экрана - от 0,7 мм, а коэффициент светопропускания - не менее 80%.

Плитные конструкционные оптически прозрачные экраны могут быть созданы на базе стекла (коэффициент светопропускания - не менее 75, коэффициент экранирования не менее 30 дБ в диапазоне частот - 30 МГц - 40 ГГц. Вес - не более 18 кг/ кв.м.).

Подобные материалы позволяют создавать эксклюзивные электромагнитные экраны для обеспечения потребностей любой из отраслей промышленности и производить многофункциональные высокоэффективные в широком диапазоне частот (от 50 Гц до 100 ГГц и более) мобильные экранированные объемы, такие как :

Портативные экранированные камеры;

Мобильные экранированные объемы и элементы;

Быстроразворачиваемые экранированные рабочие модули;

Оптически прозрачные экранированные модули и др.

Область применения экранирован­ных помещений, объемов и конструк­ций велика. Благодаря появлению мо­бильных экранированных объемов стала возможной защита от повышен­ного уровня электромагнитных излу­чений любых технических средств и объектов, включая временно занимае­мые (арендуемые) помещения; у поль­зователей появилась возможность са­мостоятельно оборудовать техничес­кое средство, требующее защиты; быс­тро разворачивать экранированные укрытия как на открытой площадке, так и внутри помещения.

Более того, универсальные мобильные экранированные объемы могут изготавливаться в со­ответствии с техническими и габарит­ными требованиями конкретного заказчика.

Если говорить об эффективной защите серверных помещений в офисах, решение таких задач требует обеспечение специализированной комплексного экранирования, как в других случаях, в соответствии со специальными требованиями и нормативами документами *:

Раньше для экранирования от электромагнитных излучений помещений, например, для размещения серверов, электронного оборудования и т.д., - изготавливали стальные панели толщиной 1,2-2,0 мм. Панели соединялись между собой контактной сваркой, а затем проваривались сплошным швом. Для предотвращения коррозии металла панели окрашивали с обеих сторон. Так, например,была разработана экранированная кабина типа "Гарант" , на которую было полученоТУ У31.6-24248667-004:2008. Несмотряна её дороговизну , конструкция кабины позволяет осуществлять ее монтаж в помещении без применения сварки, что позволяет, при необходимости, разобрать и перевезти ее на другой объект, где собрать заново. Такие кабины являлись приемлемым решением для защиты серверов в отделениях банков и фирм, в том числе и в тех, которые расположены в арендованных помещениях.

Следует отметить, что независимо от выбора материалов, система вентиляции экрансооружений имеет входной и выходной каналы. Эффективность электромагнитного экранирования достигается при помощи сотовых отверстий (волноводных фильтров). Система воздухообмена осуществляется кондиционером, внутренний блок которого должен размещаться вне помещения и путем воздуховодов осуществляется охлаждение воздуха. В экран помещения воздуховоды подсоединяются через диэлектрическую вставку и волноводный фильтр. Все линии электропитания, пожарной и охранной сигнализации фильтруются, разводка по помещению осуществляется в трубах или экранированной оплетке. Все линии локальной сети заводятся в металлических трубах, на концах труб устанавливаются специальные фильтры с радиопоглощающим материалом. Силовые и информационные вводы в помещение осуществляются через специальные фильтры.

Измерения затухания ПЕМИН (аттестация экрансооружений) производится после монтажа и по итогам обычно выдается протокол измерений и паспорт помещения.

Одним из путей проникновения электромагнитных помех во вторичные цепи является наличие емкостной и/или индуктивной связей между цепями. Ослабление связи достигается экранированием электромагнитных полей. Для ослабления электрического поля обычно используются конструкции из высокопроводящих материалов. Ослабление магнитного поля производят с помощью экранов из ферромагнитных материалов. Высокочастотные поля экранируют ферромагнитными материалами, либо высокопроводящими немагнитными материалами.

Как правило, такие материалы являются достаточно дорогими, поэтомуэкранирование помещений является дорогостоящим решением .

В последнее время появились композиционные материалы, которые могут быть эффективным и достаточно дешевым решением.

Настоящая работа посвящена исследованию экранирования с помощью прототипа композиционного материала «Новафор» на базе известного резистивного композита «ЭКОМ» .

1. Прототип

Прототипом являлся композиционный материал «ЭКОМ », который составляется из трех мелкодиспергированных компонентов: графит, окись железа, корунд и одного жидкого компонента: ортофосфорная кислота. Для усиления подавления ЭМП в материале желательно иметь более высокую электропроводность и магнитную проницаемость. С этой целью необходимо добавить компоненты, имеющие высокие магнитную проницаемость и электропроводность. При этом просто добавление графита неэффективно, т.к. сопровождается уменьшением механической прочности материала. Было предложено добавление железной руды на основе Fe 3 O 4 , SiO 2 , Al 2 O 3 в качестве магнитного компонента (~20) и графита, в качестве электропроводного элемента. При этом механическая прочность обеспечивалась дополнительными технологическими операциями: плитки из базового материала перемалывались, к перемолу добавляли графит и ортофосфорную кислоту . Было получено, что ослабление электрического поля довольно значительно.

2. Эксперимент

Методика измерений с помощью устройства "Защита" была аналогичной изложенной в . Результаты представлены в таблице 1.

Толщина, мм

Удельное сопр., мОм.м.

Ослабление магнитного поля, дБ на частоте, МГц

Ослабление электрического поля, дБ на частоте, МГц

3. Аналитика

Анализируя полученные данные можно заметить, что появилось ослабление магнитного поля в области низких частот. Это указывает, в том числе, на ферромагнитные свойства композиции. Конкретное значение магнитной проницаемости трудно определить из этих данных. Оценку проще сделать, используя известное выражение для расчета эффективной проводимости матричных композиционных материалов .

где V m -объемная доля руды, А - характеризует форму частиц, А=1.5 для сфер, А=3 для частичек нерегулярной формы с минимальной поверхностью, А=4 для пластинок и чешуек различной формы. Pm - максимально возможная объемная доля фазы, характеризующая укладку и форму частиц. Здесь матрицей являются неферромагнитные компоненты материала, а руда является наполнителем. Ее объемное содержание, например, для самого лучшего образца 125 составляло примерно 0.5. Для этого случая эффективная магнитная проницаемость композита, согласно (1), должна составлять примерно 3.

Нарастание коэффициента затухания магнитного поля и ослабление коэффициента затухания электрического поля с ростом частоты вполне очевидно, это связано с переходом из электростатического и магнитостатического режимов в электромагнитный режим экранирования. Действительно, самые высокие коэффициенты затухания в области высоких частот имеют образцы с меньшим удельным сопротивлением и с меньшей глубиной скин-слоя. А в экспериментах с самым высокоомным образцом 125 высокочастотное ослабление электрического поля не зафиксировано. Оценим глубину скин-слоя для образца 125. Глубина проникновения поля в проводящей среде определяется магнитной проницаемостью , частотой , проводимостью :

(2)

Полное затухание поля определяется отражением P на границе сред и поглощением А в материале образца. Для волнового режима коэффициент затухания вследствие отражения определяется соотношением K=Z 0 /Z e из выражения

(3)

а коэффициент ослабления вследствие поглощения можно определить по выражению

А=8.7h/ (4)

Для частоты 30 МГц значение  составляет 3.7 мм. Если стенка экранирующей плитки находится в дальней зоне источника, то волновое сопротивление пространства Z 0 =377 Ом, а волновое сопротивление плитки Z e =2/() на частоте 30 МГц для лучшего образца составит Z e 1.9 Ом, соответственно коэффициенты затухания для образца 371 должны были составлять примерно A=14.5, P=46. На самом деле, волновое сопротивление пространства в квазистатических режимах имеет существенно разные значения для электростатического и магнитостатического режимов. Поэтому коэффициент затухания вследствие отражения имеет существенно меньшие значения. Если считать расстояние от источника до экрана примерно 1 мм, то коэффициент отражения по электрической составляющей должен составлять более 90, а коэффициент отражения по магнитной составляющей примерно 8. Оценки отражения по электрической составляющей явно не соответствуют эксперименту. Тогда как суммарное ослабление по магнитному полю P+A22.5 незначительно отличается экспериментального значения 26.

В композиционном материале коэффициент отражения может иметь особенности. В частности в нем должен проявиться размерный эффект, при котором коэффициент отражения будет значительно меньше, по сравнению с отражением от гомогенного материала с той же проводимостью. Рассмотрим скин-эффект в дисперсном материале, составленном из композиции проводящего и непроводящего порошковых материалов. Выталкивание тока в тонкую приповерхностную область должно привести к новому эффекту. Дело в том, что в композиционном материале, при изменении концентрации проводящей компоненты, ток изменяется немонотонно. При низком значении концентрации электропроводность мала, а при некотором значении, называемом порогом проводимости, происходит ее резкий рост на несколько порядков. При трехмерном протекании пороговая концентрация значительно ниже, чем при двухмерном протекании . Выбирая фактическую концентрацию таким образом, чтобы она была выше "объемного" порога протекания, но ниже "поверхностного" порога протекания, можно получить, что удельное сопротивление материала вблизи поверхности будет значительно выше, чем объемное удельное сопротивление. Это должно привести к особенностям не только отражения, но и поглощения ЭМП.

Выводы

Высокоперспективным является дальнейшее изучение свойств нового композиционного материала класса «Новафор» (в сравнении с прототипами). Новый материал обладает достаточно высоким поглощением, как по магнитной, так и по электрической составляющим ЭМП. Анализ поведения композиционного материала под действием полей показывает, что он может обладать аномалиями в коэффициентах отражения и поглощения. Модификации подобного материала могут найти широкое применение при решении задач электромагнитной совместимости в ряде областей, в частности при создании безэховых помещений** и др.

Примечание*

1) СанПиН 2.2.4/2.1.8.055-96.ЭЛЕКТРОМАГНИТНЫЕ ИЗЛУЧЕНИЯ РАДИОЧАСТОТНОГО ДИАПАЗОНА (ЭМИ РЧ).

7.4. Экранирование источников ЭМИ РЧ или рабочих мест осуществляется с помощью отражающих или поглощающих экранов (стационарных или переносных). Отражающие экраны выполняются из металлических листов, сетки, ткани с микропроводом и др. (приложение 3).

В поглощающих экранах используются специальные материалы, обеспечивающие поглощение излучения соответствующей длины волны. В зависимости от излучаемой мощности и взаимного расположения источника и рабочих мест конструктивное решение экрана может быть различным (замкнутая камера, щит, чехол, штора и т.д.).

7.5. При изготовлении экрана в виде замкнутой камеры вводы волноводов, коаксиальных фидеров, воды, воздуха, выводы ручек управления и элементов настройки не должны нарушать экранирующих свойств камеры.

7.6. Экранирование смотровых окон, приборных панелей проводится с помощью радиозащитного стекла. Для уменьшения просачивания электромагнитной энергии через вентиляционные жалюзи последние экранируются металлической сеткой, либо выполняются в виде запредельных волноводов.

7.7. Уменьшение утечек энергии из фланцевых сочленений волноводов достигается путем применения "дроссельных фланцев", уплотнения сочленений с помощью прокладок из проводящих (фосфористая бронза, медь, алюминий, свинец и другие металлы) и поглощающих материалов, осуществления дополнительного экранирования.

2) Санитарные нормы и правила при работе с источниками электромагнитных полей высоких, ультравысоких и сверхвысоких частот. (утв. Главным Санитарным врачом СССР 30 марта 1970 г. N 848-70 с изменениями от 8 февраля 1978 г.)

Литература

    А.И. Ольшанский. Патент РФ на изобретение № RU 2008114856.

    А.И. Ольшанский. Патент РФ на изобретение № RU 2008115285.

    А.И. Ольшанский. Патент РФ на изобретение № RU 2299057.

    А.И. Ольшанский. Патент РФ на изобретение № RU 2379066.

    А.И. Ольшанский. Патент РФ на ПМ.№ RU 76803.

    A. I. Olshanskiy. COMPOSITE MATERIAL, PACKAGE AND CARRIER MADE ON THE BASIS OF THE COMPOSITE MATERIAL AND METHOD OF PRODUCING THE COMPOSITE MATERIAL. PCT/RU2009/000177. 14.04.2009 г.

    Сарин Л.И., Белокуров Е.М., Емельянов Н.И., Ильиных М.В., Хохлов В.М. Материалы для экранирования электромагнитных полей на основе железофосфатного связующего. Тез. докл. научно-техн. конференции "Создание и использование новых перспективных материалов для радиоэлектронной аппаратуры и приборов", Москва, ГУП ВИМИ, 2000, стр. 85-86.

    Наполнители для полимерных композиционных материалов. Спр. пособие/Под ред.Г.С.Каца и Д.В.Милевски.- М.:Химия, 1981, 736 с.

    Шваб А. Электромагнитная совместимость: Пер. с нем. В.Д.Мазина и С.А. Спектора 2-е изд., перераб. и доп./Под ред. Кужекина И.П. М.: Энергоатомиздат, 1998, 480 с.

    Неймарк А.В. Электрофизические свойства перколяционного слоя конечной толщины, ЖЭТФ, т.98, в.2, 1990, стр. 611-626.

    СанПиН 2.2.4/2.1.8.055-96 ЭЛЕКТРОМАГНИТНЫЕ ИЗЛУЧЕНИЯ РАДИОЧАСТОТНОГО ДИАПАЗОНА (ЭМИ РЧ).

    В. Н. Коваленко, Д.Н. Владимиров, Е. Н. Хандогина. Многофункциональные мобильные экранированные объемы. Технологии оборудование материалы", апрель-июнь 2003.

    С.М. Коробейников, Л.И. Сарин, В.М. Хохлов. Экранирующий материал для защиты от ЭМП. Москва, ГУП ВИМИ, 2005.

    МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ГОСТ 30372-95. ГОСТ P 50397-92. УДК 621.38.001.4: 006.354. Группа Э00 СОВМЕСТИМОСТЬ ТЕХНИЧЕСКИХ СРЕДСТВ ЭЛЕКТРОМАГНИТНАЯ. Термины и определения. Electromagnetic compatibility for electronic equipment. Terms and definitions. ОКСТУ 3401, 6301, 6501.

    ГОСТ Р 50414-92. Совместимость технических средств электромагнитная. Оборудование для испытаний. Камеры экранированнные . Классы, основные параметры, технические требования и методы испытаний. Electromagnet compatibility of technical means. Test equipment. Shielded chambers. Classes, general parametres, technical requirements and test methods.

    ДокументSP–3-0092: (Стандарт TIA-942, редакция 7.0, февраль 2005) Телекоммуникационная инфраструктура Центров Обработки Данных . Скачать стандарт TIA-942

А.И. Ольшанский Современные способы защиты от электромагнитных полей. Перспективные экранирующие материалы класса «Новафор». // Научный электронный архив.
URL: (дата обращения: 21.04.2019).

Электромагнитное экранирование – способ снижения интенсивности электромагнитных волн до заданного уровня с помощью специального материалов, оборудования и технологических решений. Снижение интенсивности поля необходимо для защиты людей или техники от влияния электромагнитного излучения либо для предотвращения нежелательной утечки информации, которая может переноситься электромагнитным излучением.

Экранирование обеспечивается созданием специальных экранов, от которых излучение может отражаться, в которых оно может поглощаться или рассеиваться, либо комбинацией этих способов. Экраны образуют замкнутые объемы, которые охватывают или объект защиты от излучения, либо объект, излучение от которого должно быть подавлено. Кроме того, необходимы специальные решения для ввода в электромагнитный экран или вывода наружу различных линий инженерных или информационных коммуникаций.

Экранирование от ЭМИ – защита людей, техники, информации

Во всех странах законодательно задается допустимый уровень излучения, которому может подвергаться человек без опасения за его здоровье. Применение экранов позволяет снизить потенциально опасные для здоровья уровни излучения до безопасных.

Под воздействием интенсивных полей наблюдаются сбои в работе электроники. Помехи, создаваемые мощными полями, могут вывести из строя интегральные микросхемы и полупроводниковые элементы.

Становится возможным несанкционированный доступ к конфиденциальной информации. Интенсивное излучение позволяет задействовать специальные дистанционные устройства, считывающие данные в процессе работы компьютера. Непроизвольным передатчиком секретной информации может стать любой электронный гаджет, например, смартфон.

Преграду электромагнитному полю создает экран с высокой магнитной или электрической проводимостью, оборудованный вокруг защищаемого пространства или полости. В требуемых случаях экранируют источник излучения, чтобы предотвратить его распространение.

Правильно оборудованный защитный экран позволяет:

  • ограничить негативное воздействие на электронные и радиотехнические устройства;
  • организовать безопасное рабочее место для обслуживающего персонала;
  • исключить несанкционированное проникновение к конфиденциальной информации.

Прежде чем использовать тот или иной метод защиты экранированием, необходимо обследование объекта специалистами для создания проекта.

В ряде случаев необходимо исследовать объект с помощью специального оборудования.

В процессе исследования анализируются частотные параметры ЭМИ, измеряется его уровень в разных точках. Поручив эту процедуру специалистам «НТЦ Фарадей», заказчик получает инструментально точные результаты и квалифицированные рекомендации по организации эффективного экранирования.

От чего зависит эффективность экранирования

Уровень экранирования определяется показателем коэффициента экранирования. Коэффициент экранирования – отношение величин интенсивности электромагнитного поля до экрана и за экраном.

На эффективность действия экрана в совокупности влияют несколько факторов:

  • частотный диапазон электромагнитных полей;
  • степень электропроводимости используемых материалов;
  • показатель магнитной проницаемости материалов;
  • габариты и расположение экрана.

Все эти факторы необходимо учитывать при разработке проекта экранирования для каждого конкретного объекта.

Зависимость экранирования от частотного диапазона

Экранирование полей высокочастотного диапазона основано на отражении и поглощении электромагнитной волны при переходе из одной среды в другую. Электромагнитная волна, взаимодействуя с экраном, частично отражается его поверхностью, частично поглощается материалом экрана. Эти процессы приводят к потере энергии, ослаблению и затуханию волны.

При экранировании низкочастотных полей (так называемые магнитные поля) используют свойства так называемых магнитомягких материалов.

Для экранирования высокочастотных полей основное требование – высокая электропроводность материала экрана и отсутствие отверстий, щелей, плохого контакта элементов экрана. Даже небольшое отверстие при короткой длине волны превращается в так называемую щелевую антенну, в итоге пропускающую излучение через экран.

Элементы и сырье для экранирования

В производстве защитных экранов используются разнообразные материалы. Средством экранирования могут служить листовая медь, алюминий, сталь или фольга, а также современные специализированные ткани и сетки. Чем выше удельная проводимость материала экрана, тем эффективнее экранирование. Конкретное значение защитных способностей экрана зависит от конфигурации и объема помещения, площади оконных и дверных проемов, материала стен.

Сырьем для изготовления экранирующих конструкций и приспособлений служат:

  • стальные и медные пластины — для сооружения корпусов, камер, внутренней облицовки помещений;
  • тонкая фольга из мягкомагнитных сплавов – защита аппаратуры;
  • металлические ленты и оплетки – экранирование кабелей;
  • металлизированные шланги – защита кабельных жгутов;
  • металлические соты – для организации экранов с воздухопроницаемыми свойствами;
  • тонкая проволочная сетка – экранирование оконных проемов.

Надежное и качественное экранирование помещений и оборудования невозможно обеспечить без тщательного уплотнения оконных и дверных проемов, строительных стыков, всевозможных щелей и отверстий. В этих целях используются специальные материалы, которые в достаточной степени обладают такими качествами, как:

  • проводимость;
  • формуемость;
  • устойчивость к ЭМП разной интенсивности;
  • низкий уровень контактного сопротивления.

Данным требованиям соответствуют уплотнители, выполненные на основе силиконового каучука. Используются в экранах виде трубок, пластинок, кольцевидных шнуров.

Электромагнитная безопасность от «НТЦ Фарадей»

Создание условий для электромагнитной безопасности помещений, особенно в отношении защиты информации необходимо предусматривать на стадии проектных разработок. , используемые компанией «НТЦ Фарадей», позволяют выполнять качественное электромагнитное экранирование, как на стадии возведения объекта, так и уже существующих помещений, которые изначально не предназначались под специальное использование.

Специалисты компании разработают и реализуют уникальный проект экранов любой сложности по заказу и техзаданию заказчика:

  • цельносварные камеры и сборно-разборные камеры с требуемыми заказчику размерами;
  • экранирующие ворота и двери;
  • экраны-фильтры для оптоволокна;
  • специализированные стекла для отдельного наблюдения;
  • защитные материалы по линии ЭМС;
  • электрические фильтры (силовые и сигнальные);
  • вентиляционные фильтры.

Выполняется тестирование и постоянная техническая поддержка в процессе эксплуатации защитных систем электромагнитного экранирования.

С каждым годом на рынке появляется все больше и больше экранирующих материалов. Но не все они обладают высоким качеством и заявленными экранирующими свойствами.

В статье постараюсь рассказать о ряде грунтовок или красок, не содержащих металла.

Одним из преимуществ неметаллических экранирующих грунтовок/красок является их более низкая рыночная стоимость по-отношению к своим металлическим собратьям. Низкая стоимость достигается за счет наличия в базе различных форм токопроводного углерода (сажа, графит и т.д.). Думаю, что некоторые читатели раньше пробовали подводить электрический ток к графитовому стержню карандаша и на практике наблюдали электрические свойства данного материала. В красках этот графит и прочие материалы заменяют металл, не пропуская электромагнитное излучение.

На рынке можно встретить ряд производителей из Германии, США, России и Китая, которые заверяют, что у них есть прекрасный продукт. Но так ли есть на самом деле?

Чтобы создать объективную картину, наша компания старается приобретать изделия различных фирм-производителей и проверять их на одном оборудовании при использовании одной методики в заданном диапазоне частот . Помимо этого ООО «Измерительные Системы и Технологии» ведет самостоятельную разработку защитного покрытия, которое в дальнейшем планируется применять по программе импортозамещения.

Методика оценки заключается в следующем:

  • Оценка качества материала, находящегося в жидком состоянии, визуальным путем;
  • Оценка качества материала, находящегося в твердом состоянии, визуальным путем;
  • Оценка материала на экранирующие свойства в коаксиальном тракте;
  • Оценка стоимости одного квадратного метра окрашенной поверхности.

Оценку прочностных параметров и химико-лабораторного анализа изделий мы не применяем в связи с тем, что при проведении вышеперечисленных этапов, большинство образцов не проходят контроль заявленного качества.

В данной статье приведем пример по грунтовкам из Германии, России (производитель находится в г.Санкт-Петербург), собственный опытный образец и образец из Китая.

Образец №1 (Китай)

Образец мы получили через 3 месяца после заказа. Железная банка, булькающая жидкость внутри, крайне мало информации по описанию изделия. Экранирующие свойства заявлены на неизвестной частоте на уровне 80-90%. . При открытии банки наружу вырвался очень едкий запах. После полного размешивания, получилась довольно однородная относительно жидкая субстанция. На второй день после нанесения материала на поверхность, грунтовка стала расслаиваться.

Стоимость материала составила 4000 руб за 5 литровое ведро. При заявленных 4-8 квадратных метрах на 1 литр получается 100-200 руб за квадратный метр. Очень хорошо. Но экранирующих свойств просто нет. Качества нет. Поэтому дальше краску не рассматриваем.

Образец №2 (собственный опытный образец)

Разработанный образец имеет жидкую равномерную структуру после короткого перемешивания. Наносится 1 литр на площадь 6-8 квадратных метров. Ложится ровно, адгезия хорошая, не расслаивается в процессе сушки. Сильно пачкает при прислонении.

Максимальные экранирующие свойства и токопроводность достигаются на третий день после нанесения. Имеет хуже токопроводность, по сравнению с немецким аналогом, но лучше китайского и российского БВ-1 и схожие экранирующие свойства с продукцией Yshield GmbH. Коэффициент экранирования составил 23,8…27,8 дБ в диапазоне частот 100МГц…7ГГц.

Стоимость материала выше, чем у , поэтому на текущий момент не представлена в ассортименте компании. Ведется доработка материала.

Образец №3 (грунтовка экранирующая БВ-1)

После длительного перемешивания имеет очень густую структуру. Встречаются комочки размером до 1 сантиметра в диаметре (даже после размешивания). На упаковке есть надпись «ПЕРЕД ПРИМЕНЕНИЕМ ТЩАТЕЛЬНО ПЕРЕМЕЩАТЬ ». Как «перемещать», куда «перемещать», не известно. Может поэтому остались в экранирующей грунтовке БВ-1 комочки (из-за неправильного «перемещения»)?

Через сутки после нанесения, покрытие начало частично расслаиваться . Для грунтовых покрытий данный материал однозначно не подойдет.

По экранирующим свойствам грунтовка абсолютно не соответствует заявленным свойствам!!!

Тестирования проводились на одном оборудовании (в компании ООО НПП «Радиострим». Методика и оборудование в конце статьи).

В диапазоне частот 100 МГц…7ГГц коэффициент ослабления фактически находился в коридоре 4,2…7дБ. Заявленное ослабление производителем 27…37 дБ. Обычная железобетонная стена толщиной 15 см обладает коэффициентом ослабления электромагнитных полей 10…20дБ (на частоте 1 ГГц). В протоколе испытаний (), предоставляемого производителем, имеется ряд несоответствий, что вызывает дополнительные сомнения о качестве продукта и компетенции испытательной лаборатории.

  1. Если внимательно посмотреть, то среди испытательного оборудования присутствует генератор сигналов SMT 02. В описании технических характеристик генератора, верхняя рабочая частота ограничена значением 1,5 ГГц, а в протоколе присутствуют частоты измерений 1,8ГГц, 2,1ГГц и 2,4ГГц. Волшебство какое-то получается.
  2. Поехали дальше. Зачем в перечне оборудования указаны логопериодическая антенна HyperLOG 7025 (не внесенная в Госреестр Средств Измерений) и рупорная антенна SAS 571 (скорее всего тоже не в Госреестре СИ)? На схеме и в измерениях данные антенны не принимают никакого участия.
  3. Теперь покажите мне антенны АДИ-2. Информации по существованию данных антенн я вообще не нашел на просторах интернета.

Что касается стоимости. Все прекрасно. Заявленная стоимость 1350 руб за 1 кг грунтовки. Стоимость 1 м2 при указанном производителем расходе составит 203…405 руб.

Итог: полный развод на деньги. Экранирующая грунтовка БВ-1 (производство Санкт-Петербург) практически не является экранирующей. Заявленные параметры, скорее всего, сфальсифицированы. Качество краски как покрытия оставляет желать лучшего.

Совет: за чуть большие денежные средства лучше применить металлическую сетку или краску другого производителя, а не иметь ослабление ВЧ полей на уровне кирпичных стен.

Что касается сертификатов, то Декларацию Соответствия или Сертификат Соответствия можно просто заказать без какой-либо отправки материала в испытательную лабораторию. Делается это элементарно.

Образец №4 (экранирующая краска/грунтовка HSF54. Страна производства - Германия)

Характеристики краски в ее жидком и высохшем состоянии оставляют хорошие впечатления. Легко перемешивается, достаточно жидкая. Если прикоснуться к высохшей поверхности, можно сильно испачкаться графитом. Имеет высокую стабильность.

По экранирующим свойствам не соответствует заявленным. Фактические параметры ниже заявленных, но имеют довольно неплохой уровень. Различия в коэффициентах экранирования могут быть обусловлены различными методиками измерений. АЧХ довольно линейна. В диапазоне частот 100 МГц…7ГГц имеет коэффициент ослабления на уровне 26…28 дБ.

Стоимость довольно высокая. 1 литр стоит 5000…5500 руб. В 5 л ведрах получается дешевле (24500 руб.). Цена за 1 квадратный метр будет колебаться в диапазоне 700…820 руб.

Итог: единственная на настоящий момент экранирующая грунтовка / краска без металлических компонентов, не имеющая пока равных на рынке в сегменте цена/качество. Легко конкурирует по данному параметру со специализированными сетками из нержавеющей стали и меди (В связи с применением минимума монтажных работ по нанесению краски на различные поверхности. Сетку нужно срастить, прибить к поверхности, заштукатурить и т.д.).

Методика испытаний

ОБЪЕКТЫ ИСПЫТАНИЙ.

  • Объектами испытаний являлись образцы краски, обеспечивающие электропроводность при нанесении на бумажную подложку. Краска предоставлена ООО «Измерительные Системы и Технологии».
  • Подготовка образцов и технология нанесения: перед покрытием проводилось встряхивание, без УЗ обработки. После одностороннего покрытия образцы выдерживались не менее 2 суток в нормальных (по ГОСТ) условиях.
  • В качестве основы образцов экранирующих материалов использованы:
  • писчая бумага (стандарт, плотность до 80 г/м 2), одностороннее покрытие.

ЦЕЛЬ ИСПЫТАНИЙ.

Оценка степени экранировки (коэффициента прохождения электромагнитного излучения K прох) в диапазоне частот: 100 МГц - 7 ГГц образцов бумаги и ткани, обработанных испытуемой краской.

МЕТОДИКИ ИСПЫТАНИЙ

Измерения в диапазоне частот 100 МГц...7 ГГц проводились на лабораторном стенде, на базе измерителя комплексных коэффициентов передачи "Обзор-804/1", сопряжённого с компьютерной системой регистрации и обработки сигнала. Образцы помещались в коаксиальную измерительную ячейку сечением 16/6.95 мм, согласованную с коаксиальным измерительным трактом и включенную в режим измерения ослаблений (пропускания). Тракт обеспечивает распространение волны ТЕМ-моды. Перед проведением измерений проводилась полная двухпортовая калибровка пустой измерительной ячейки. Образцы изготовлялись таким образом, чтобы обеспечить электрический контакт центрального и внешнего проводников по всему периметру.

Для подтверждения информации по экранирующим свойствам, можем выслать протоколы испытаний, проведенных в лаборатории ООО НПП «Радиострим» (по требованию).

Выводы делайте сами.

В настоящий момент хорошие экранирующие краски имеют экономическое преимущество перед экранирующими сетками из нержавеющей стали и меди.

В следующей статье пойдет сравнение экранирующих штукатурок.

Экранирование стен от электромагнитных излучений - одна из составляющих при экранировании помещений на объекте. Данная процедура применяется для защиты людей, находящихся в помещении от внешнего воздействия источников электромагнитного излучения. Источником электромагнитных излучений могут выступать базовые станции сотовой связи, радары, различные испытательные центры и установки, линии электропередач, трансформаторные подстанции, распределительные щиты, серверные и многое другое.

Для экранирования стен могут применяться различные материалы: экранирующие сетки, краски, крупноячеистые ткани, металлические листы. Самым универсальным материалом является краска (грунтовка). При экранировании стен от электромагнитных излучений необходимо установить их диапазон частот. Если это низкие частоты, например, ЭМП, формируемые высоковольтными линиями электропередач или трансформаторными подстанциями, то требуется защита в низкочастотном диапазоне (десятки-тысячи Герц) не только от электрической составляющей, но и от магнитной. Магнитное поле гораздо сложнее экранировать, чем электрическое. Для этого необходимо применять металлические листы (тонкие) с обязательным их заземлением, закрывать все щели, пропаивать или проклеивать все стыки. Убрав магнитную составляющую, автоматически уберется и электрическая. Все остальные материалы (краски, ткани, сетки) ослабляют только электрическую составляющую.

Если происходит экранирование стен от высокочастотных электромагнитных излучений, то достаточно применить мелкоячеистую сетку или краску (грунтовку). Данные материалы тоже требуют заземления.

Самой большой проблемой при экранировании стен от электромагнитных излучений может стать отсутствие заземляющей шины, с которой можно скоммутировать защитные материалы. Данная проблема может возникнуть в старых домах, не оборудованных специальной системой заземления.

В последнее время экранирование стен в помещениях (на объектах) требуется для решения крайне специфичной задачи - защита от переизлучений металлических конструкций. В современных строениях в стенах заложено большое количество арматуры и других металлических изделий, которые зачастую являются переизлучателями сигнала (или модуляторами при наслоении нескольких сигналов разной частоты). Экранирование помогает убрать данный эффект.

Еще одной задачей является экранирование электрической проводки. Данный вопрос особо актуален в деревянных или щитовых домах. Зашита от излучения, формируемое проводкой, производится при помощи краски. После экранирование стен, кровати можно ставить в непосредственной близости со стенами.

Если у Вас возникли вопросы по экранированию тех или иных поверхностей (объектов), Вы можете обратиться к сотрудником нашей компании за подробной консультацией по специализированным материалам и их применению.

Под электромагнитным экранированием понимается комплекс мер, ограничивающих область распространения электромагнитных волн (сигналов). Это необходимо для:

  • обеспечения защиты людей от недопустимого для человеческого организма уровня электромагнитного воздействия;
  • исключения негативного взаимовлияния (создания индустриальных радиопомех) различных передающих и приемных радиоэлектронных устройств;
  • защиты информации в помещениях и технических каналах от несанкционированного съема;
  • обеспечения благоприятной электромагнитной обстановки вокруг работающих электроустановок и сверхвысокочастотных устройств.

Электромагнитный экран

Электромагнитный экран - это металлическая оболочка, которая используется для исключения влияния экранированного оборудования на другие приборы и людей. Путем окружения такой оболочкой источника переменного электромагнитного поля можно исключить влияние этого источника на устройства, расположенные вне оболочки.

Чем выше частота и толщина стенок экрана, тем экранирующее действие выше.

Эффективное экранирующее действие достигается при толщине стенок , которая равна длине волны в веществе экрана. Объясняется это тем, что в момент проникновения волны в проводящее полупространство происходит е2p-кратное ослабление поля. Другими словами, на таком расстоянии происходит фактически полное затухание волны. На практике считается, что затухание происходит уже на расстоянии, в два-три раза меньшем по сравнению с длиной.

Что касается частоты , то при ее увеличении уменьшается глубина проникновения (длина волны) электромагнитного поля в проводнике.

Для экранирования высокочастотных полей (радиочастоты) не нужно использовать экраны из ферромагнитных материалов, которые являются нежелательными из-за того, что их магнитная проницаемость зависит от напряженности магнитного поля и явления гистерезиса. Как правило, в данном случае для экранирования применяются хорошо проводящие материалы, например, медь или алюминий.

В случае промышленной частоты (50 Гц) медный экран уже малоэффективен, кроме случая, когда толщина стенок экрана является значительной. Объясняется это длиной волны на этой частоте в меди, составляющей порядка 6 см. И вот тут уже целесообразно для экранирования выбирать ферромагнитный материал, который благодаря своей высокой магнитной проницаемости обеспечит значительно более быстрое, нежели медь, затухание электромагнитной волны.

Бывает полное и частичное электромагнитное экранирование.

Экран может состоять из сплошного однородного металла или же представлять собой многослойную конструкцию. Многослойным экран делают для избежания эффекта насыщения. Желательно при этом, чтобы по отношению к экранируемому излучению каждый последующий слой имел начальное значение магнитной проницаемости большее, чем предыдущий.

При электромагнитном экранировании происходит потеря части энергии в экране. В связи с этим материал и размеры экрана при его разработке выбираются на основании допустимых потерь, вносимых экраном в экранируемую цепь.

Экранирование помещений

Под экранированием помещений понимают локализацию электромагнитного поля в какой-то отдельной комнате или части помещения для более или менее полного освобождения остальной среды от этого поля. Благодаря этому обеспечивается защита как людей от воздействия электромагнитных полей, так и радиоэлектронных приборов от внешних полей. Кроме того, локализуются собственные излучения этих приборов, это препятствует появлению их в окружающем пространстве.

Посредством экранирования помещений, где происходят прием, передача и обработка конфиденциальных данных, возможно снижение уровней электромагнитных излучений до заданных величин, что, в свою очередь, делает почти невозможным несанкционированных съем данной информации.