Нанесение антикоррозионных покрытий. Назначение антикоррозийных покрытий

Металл является одним из самых востребованных материалов, применяемых в строительстве и промышленности. Несмотря на то что в некоторых областях его успешно заменяет легковесный и более практичный стеклокомпозит, актуальность традиционных конструкций сохраняется на довольно высоком уровне. Способствуют этому и применение дополнительных мер обработки материала, исключающих негативные факторы эксплуатации. Среди таких действий выделяется антикоррозионная защита металлоконструкций, благодаря которой технологи исключают поражение ржавчиной. В итоге увеличивается срок службы конструкций, на протяжении которого сохраняются оптимальные технико-физические характеристики объекта.

Общие сведения об антикоррозийной защите металла

Защита металлической поверхности от коррозии предусматривает наружную обработку материала специальными средствами, которые формируют слой, предотвращающий негативные процессы разрушения структуры. В качестве основы для обрабатывающих компонентов могут рассматриваться лакокрасочные материалы, те же металлы и сплавы. Важно отметить, что антикоррозионная защита металлоконструкций не предполагает универсальность. В зависимости от условий эксплуатации объекта, характеристик конкретной марки используемого металла и возлагаемых на него конструкцию нагрузок, подбирается конкретное средство обработки. Различаются и сами подходы к обеспечению покрытия поверхностей, что объясняется разнообразием спектра угроз, от которых защищается металл. Функция антикоррозийного покрытия редко сводится только лишь к созданию барьера перед ржавчиной – нанесенный слой, как правило, оберегает конструкцию от биологических и механических воздействий.

Проект защиты от коррозии

Оценкой характеристик конкретного металла, а также условий его использования занимаются специалисты, разрабатывающие проект защиты. Для каждой сферы применения конструкций предусматриваются свои нормативы, которые описывает ГОСТ. Антикоррозионная защита металлоконструкций, используемых в регионах с расчетной температурой воздушной среды до - 40 °С, к примеру, ориентируется на требования ГОСТ 9.401. В этом случае материал для покрытия должен подбираться так, чтобы особенности его соответствовали требованиям к морозостойкости. Разумеется, кроме температурных воздействий рассчитываются и другие контакты металлической структуры с агрессивными средами. Если внешние воздействия предполагают неагрессивный характер, то проект может рекомендовать использование защитно-декоративных покрытий.

Разновидности защитных средств

Существуют разные подходы к разделению защитных средств от коррозии. В частности, распространена классификация по назначению целевого материала. Выделяют покрытия, которые используются в обработке индустриальных конструкций, морских судов, трубопроводов, резервуаров и объектов, эксплуатируемых на открытом воздухе. Как видно, в каждом случае предполагаются свои особенности взаимодействия материала с окружающей средой. С поправкой на характер эксплуатации и выбирается антикоррозионная защита металлоконструкций. Виды покрытий для трубопроводов, например, в основе своей представлены лакокрасочными составами, а для защиты судов чаще применяются металлизированные напыления. Впрочем, ответственные с точки зрения эксплуатации металлоконструкции редко обрабатываются одним средством. Чаще всего применяется комплекс мер, включающий и технологии металлизированного напыления, и лакокрасочные составы.

Методы обработки защитным покрытием

К наиболее распространенным и традиционным способам антикоррозийной защиты стоит отнести лакокрасочные покрытия. Данная методика подходит для бытового применения, если нужно облагородить и в то же время уберечь от разрушения металлический забор, лестницу или кровельное покрытие из профнастила. Более эффективные методы связаны уже с промышленной обработкой. В эту категорию входит антикоррозионная защита металлоконструкций путем оцинковки, термической обработки, легированием, фаолитированием и т. д. Однако, чем сложнее и эффективнее методика, тем она дороже. Применение современных технологичных способов не всегда оправдывается экономически, даже если речь идет о промышленном использовании конструкций. Теперь стоит детальнее рассмотреть конкретные методики антикоррозийной обработки.

Нанесение лакокрасочных покрытий

Основой для разработки специализированных составов, способных предотвратить коррозийные процессы, зачастую выступают традиционные лакокрасочные смеси. За счет внесения в состав особых растворителей, пластификаторов и пигментов достигаются оптимальные качества покрытия. Например, эмаль для антикоррозионной защиты металлоконструкций должна обладать повышенными свойствами к адгезии и в то же время формировать надежный с точки зрения механической безопасности слой. Металлические конструкции обычно используют в суровых условиях, поэтому физическая стойкость является одним из главных направлений совершенствования защитных средств. Что касается технологии обработки, то она реализуется классическим способом с применением малярного инструмента.

Холодное цинкование

Второй по популярности и весьма эффективный метод защиты поверхностей от коррозии. В процессе реализации этой технологии объект погружается в расплав, который в дальнейшем и становится тем самым барьером перед угрозой ржавчины. Надо отметить, что по данной методике чаще всего обрабатываются стальные конструкции, а также соединяющие элементы в виде болтов и гаек. Нередко используют и дополнительные операции обработки, за счет которых укрепляется антикоррозионная защита металлоконструкций. СНиП под номером 2.01-19-2004, в котором описаны способы защиты строительных конструкций, указывает на возможность использования в качестве альтернативы или дополнения технологий хроматирования и кадмирования. После этого наносится финальное лакокрасочное покрытие.

Алитирование

Еще один способ металлизации конструкций, повышающий сопротивляемость поверхности материала к процессам коррозии. В качестве активного вещества используют порошкообразные смеси на основе ферроалюминия. Если предыдущий метод предполагает покрытие в виде цинка, то в данном случае формируется алюминиевое напыление. На поверхность объекта наносится покрытие металлизированного порошка, после чего выполняется изоляционная обмазка. Далее элемент готовится к диффузионному отжигу и обрабатывается специальной краской на той же основе алюминия. Продолжаются антикоррозионные работы по защите металлоконструкций погружением конструкции в алюминиевый расплав с выдержкой, параметры которой варьируются в зависимости от требований к конечному результату. Как показывает практика, алитирование наделяет металлические поверхности наиболее высокими характеристиками износостойкости.

Фаолитирование

Данная технология представляет собой нечто среднее между основательной обработкой металлизированными смесями и поверхностным нанесением лакокрасочного слоя. Защитный барьер в этом случае формируется посредством смеси на основе кислотоупорной термореактивной пластмассы. В итоге получается антикоррозийное и теплозащитное покрытие, которое также противодействует воздействию химически агрессивных солей. К достоинствам, которыми обладает данная антикоррозионная защита металлоконструкций, относят возможность применения в условиях высоких температур. Однако, для создания качественного покрытия перед непосредственной обработкой следует предварительно наносить бакелитовую лаковую основу.

Заключение

Средства противодействия коррозии регулярно улучшаются и становятся все доступнее не только для крупных предприятий, но и для рядовых пользователей. Появление новых методик обработки упрощает и сам процесс нанесения покрытий. При этом немаловажную роль играет проектирование антикоррозионной защиты металлоконструкций, которые используются в составе коммуникационной инфраструктуры, промышленном оборудовании и строительстве. Дело в том, что материалы, формирующие защитный барьер, сами по себе зачастую выступают активными химическими реагентами. Поэтому возрастает ответственность технологов, подбирающих оптимальные средства для обработки металлов с учетом особенностей их эксплуатации.

Антикоррозионная защита требуется любым инструментальным и конструкционным изделиям, изготовленным из металла, так как в той или иной мере все они испытывают на себе негативное коррозионное влияние среды, окружающей нас.

1

Под коррозией понимают разрушение поверхностных слоев конструкций из стали и чугуна в результате электрохимического и химического воздействия. Она просто-напросто портит металл, разъедает его, делая тем самым непригодным для последующей эксплуатации.

Специалисты доказали, что каждый год примерно 10 процентов от всего добытого металла на Земле тратится на покрытие потерь (обратите внимание – они считаются безвозвратными) от коррозии, ведущей к распылению металла, а также к выходу из строя и порче металлических изделий.

Стальные и чугунные конструкции на первых этапах воздействия коррозии снижают свою герметичность, прочность, электро- и теплопроводность, пластичность, отражательный потенциал и ряд других важных характеристик. Впоследствии конструкции становятся и вовсе непригодными для эксплуатации.

Кроме того, коррозионные явления - причина производственных и бытовых аварий, а иногда и настоящих экологических катастроф. Из проржавевших и прохудившихся трубопроводов для нефти и газа в любой момент может хлынуть поток опасных для жизни человека и для природы соединений. Учитывая все вышесказанное, любой может понять то, насколько важна качественная и эффективная защита от коррозии с применением традиционных и новейших средств и методов.

Полностью избежать коррозии, когда речь идет о стальных сплавах и металлах, невозможно. А вот задержать и снизить негативные последствия ржавления вполне реально. Для этих целей нынче существует множество антикоррозионных средств и технологий.

Все современные методы борьбы с коррозией можно разделить на несколько групп:

  • применение электрохимических способов защиты изделий;
  • использование защитных покрытий;
  • проектирование и выпуск инновационных, высокоустойчивых к процессам ржавления конструкционных материалов;
  • введение в коррозионную среду соединений, способных уменьшить коррозионную активность;
  • рациональное строительство и эксплуатация деталей и сооружений из металлов.

2

Чтобы защитное покрытие справлялось с задачами, которые возлагаются на него, оно должно обладать целым рядом особых качеств:

  • быть износостойким и максимально твердым;
  • характеризоваться высоким показателем прочности сцепления с поверхностью обрабатываемого изделия (то есть обладать повышенной адгезией);
  • иметь такую величину теплового расширения, которая бы незначительно отличалась от расширения защищаемой конструкции;
  • быть максимально недоступным для вредных факторов окружающей среды.

Также покрытие должно наноситься на всю конструкцию как можно более равномерно и сплошным слоем.

Все используемые в наши дни защитные покрытия делят на:

  • металлические и неметаллические;
  • органические и неорганические.

3

Самым распространенным и сравнительно несложным вариантом защиты металлов от ржавления, известным уже очень давно, признается использование лакокрасочных составов. Антикоррозионная обработка материалов такими соединениями характеризуется не только простотой и дешевизной, но еще и следующими положительными свойствами:

  • возможностью нанесения покрытий разных цветовых оттенков - что и элегантный облик конструкциям придает, и надежно защищает их от ржавчины;
  • элементарностью восстановления защитного слоя в случае его повреждения.

К сожалению, лакокрасочные составы имеют совсем небольшой коэффициент термической стойкости, малую стойкость в воде и относительно низкую механическую прочность. По этой причине в соответствии с существующими СНиП их рекомендовано применять в тех случаях, когда на изделия действует коррозия со скоростью не более 0,05 миллиметров в год, а запланированный срок их эксплуатации не превышает десяти лет.

К составляющим современных лакокрасочных составов относят такие элементы:

  • краски: суспензии пигментов с минеральной структурой;
  • лаки: растворы (коллоидные) смол и масел в растворителях органического происхождения (защита от коррозии при их применении достигается после полимеризации смолы либо масла или их испарения под влиянием дополнительного катализатора, а также при нагреве);
  • искусственные и природные соединения, называемые пленкообразователями (например, олифа – самый, пожалуй, популярный неметаллический "защитник" чугуна и стали);
  • эмали: лаковые растворы с комплексом подобранных пигментов в измельченном виде;
  • смягчители и разнообразные пластификаторы: адипиновая кислота в виде эфиров, дибутилфтолат, касторовое масло, трикрезилфосфат, каучук, другие элементы, которые увеличивают эластичность защитного слоя;
  • этилацетат, толуол, бензин, спирт, ксилол, ацетон и другие (данные компоненты нужны для того, чтобы лакокрасочные составы без проблем наносились на обрабатываемую поверхность);
  • инертные наполнители: мельчайшие частицы асбеста, тальк, мел, каолин (они делают антикоррозионные возможности пленок более высокими, а также уменьшают траты других составляющих лакокрасочных покрытий);
  • пигменты и краски;
  • катализаторы (на языке профессионалов – сиккативы): необходимые для быстрого высыхания защитных составов кобальтовые и магниевые соли жирных органических кислот.

Лакокрасочные соединения выбирают с учетом того, в каких условиях эксплуатируется обрабатываемое изделие. Составы на базе эпоксидных элементов рекомендованы для использования в атмосферах, где постоянно присутствуют испарения хлороформа, двухвалентного хлора, а также для обработки конструкций, находящихся в различных кислотах (азотная, фосфорная, соляная и т. п.).

К кислотам также устойчивы и лакокрасочные составы с полихровинилом. Они, кроме того, применяются для предохранения металла от воздействия масел и щелочей. А вот для защиты конструкций от газов чаще применяются составы на базе полимеров (эпоксидных, фторорганических и иных).

Очень важно при подборе защитного слоя учитывать требования российских СНиП для разных отраслей промышленности. В таких саннормах четко указывается, какие составы и методы защиты от коррозии можно использовать, а от каких лучше отказаться. Например, в СНиП 3.04.03-85 изложены рекомендации по защите различных строительных сооружений:

  • магистральных газо- и нефтепроводов;
  • обсадных труб из стали;
  • тепломагистралей;
  • железобетонных и стальных конструкций.

4

На металлических изделиях вполне можно формировать посредством электрохимической либо химической обработки специальные пленки для защиты их от ржавления. Чаще всего создаются фосфатные и оксидные пленки (опять-таки, обязательно принимаются во внимание положения СНиП, так как механизмы защиты таких соединений разные для различных изделий).

Фосфатные пленки подходят для антикоррозионной защиты цветных и черных металлов. Суть такого процесса заключается в погружении изделий в нагретый до определенной температуры (в районе 97 градусов) раствор цинка, железа или марганца с кислыми фосфорными солями. Получающаяся при этом пленка идеальна для нанесения на нее лакокрасочного состава.

Заметим, что фосфатный слой сам по себе не отличается длительным сроком применения. Он малоэластичный и совсем непрочный. Используется фосфатирование для защиты деталей, которые работают при высоких температурах или в соленой воде (например, в морской).

Также ограниченно используются и оксидные защитные пленки. Получают их при обработке металлов в растворах щелочей под действием тока. Известным раствором для оксидирования является едкий натр (четырехпроцентный). Операцию получения оксидного слоя нередко называют воронением, так как на поверхности мало- и высокоуглеродистых сталей пленка характеризуется красивым черным цветом.

Оксидирование производится в ситуациях, когда начальные геометрические параметры нужно сохранить в неизменном виде. Оксидный слой обычно наносят на точные приборы, стрелковое вооружение. Толщина такой пленки в большинстве случаев не превышает полутора микронов.

Другие способы защиты от коррозии с применением неорганических покрытий:

5

Если изделия из металла подвергнуть поляризации, скорость ржавления, обусловленного электрохимическими факторами, можно существенно уменьшить. Электрохимическая антикоррозионная защита бывает двух видов:

  • анодной;
  • катодной.

Анодная технология подходит для материалов из:

  • сплавов (высоколегированных) на базе железа;
  • с малым уровнем легирования;
  • углеродистых сталей.

Суть методики анодной защиты проста: металлическое изделие, которому требуется придать антикоррозионные свойства, подключается к катодному протектору либо к "плюсу" источника (внешнего) тока. Данная процедура обеспечивает уменьшение скорости ржавления в несколько тысяч раз. В качестве катодного протектора могут выступать элементы и соединения с высоким положительным потенциалом (свинец, платина, диоксид свинца, платинированная латунь, тантал, магнетит, углерод и другие).

Анодная антикоррозионная защита будет результативной только в том случае, если аппарат для обработки конструкций отвечает далее указанным запросам:

  • на нем нет заклепок;
  • сварка всех элементов выполнена максимально качественно;
  • пассивирование металла выполняется в технологической среде;
  • число зазоров и щелей минимально (или же они отсутствуют).

Описанный вид электрохимической защиты небезопасен из-за риска активного анодного растворения конструкций во время приостановки подачи тока. В связи с этим он осуществляется только тогда, когда имеется специальная система контроля выполнения всех предусмотренных технологической схемой операций.

Более распространенной и менее опасной считается катодная защита, которая годится для металлов, не имеющих склонности к пассивации. Подобный метод предполагает подсоединение конструкции к электродному отрицательному потенциалу или к "минусу" источника тока. Катодная защита используется для следующих видов оборудования:

  • емкости и аппараты (их внутренние части), эксплуатируемые на химических предприятиях;
  • буровые установки, кабели, трубопроводы и иные подземные сооружения;
  • элементы береговых конструкций, которые соприкасаются с соленой водой;
  • механизмы, изготовленные из , высокохромистых и медных сплавов.

Анодом в данном случае выступает уголь, чугун, металлолом, графит, сталь.

6

На производственных предприятиях с коррозией можно с успехом справляться посредством модификации состава агрессивной атмосферы, в которой работают металлические детали и конструкции. Существует два варианта снижения агрессивности среды:

  • введение в нее ингибиторов (замедлителей) коррозии;
  • удаление из среды тех соединений, которые являются причиной возникновения коррозии.

Ингибиторы, как правило, используются в системах охлаждения, цистернах, ваннах для выполнения травильных операций, различных резервуарах и прочих системах, в коих коррозионная среда имеет примерно постоянный объем. Замедлители подразделяют на:

  • органические, неорганические, летучие;
  • анодные, катодные, смешанные;
  • работающие в щелочной, кислой, нейтральной среде.

Ниже указаны самые известные и часто используемые ингибиторы коррозии, которые отвечают требованиям СНиП для разных производственных объектов:

  • бикарбонат кальция;
  • бораты и полифосфаты;
  • бихроматы и хроматы;
  • нитриты;
  • органические замедлители (многоосновные спирты, тиолы, амины, аминоспирты, аминокислоты с поликарбоксильными свойствами, летучие составы "ИФХАН-8А", "ВНХ-Л-20", "НДА").

А вот уменьшить агрессивность коррозионной атмосферы можно такими методами:

  • вакуумированием;
  • нейтрализацией кислот при помощи едкого натра либо извести (гашеной);
  • деаэрацией с целью удаления из кислорода.

Как видим, на сегодняшний день существует немало способов защиты металлических конструкций и изделий. Важно лишь грамотно подобрать оптимальный для каждого конкретного случая вариант, и тогда детали и сооружения из стали и чугуна будут служить очень и очень долго.

7

Мы хотим очень кратко рассмотреть данные СНиП, описывающие требования к защите от ржавчины строительных (алюминиевых, металлических, стальных, железобетонных и иных) конструкций. В них даются рекомендации по использованию разных методов антикоррозионной защиты.

СНиП 2.03.11 предусматривают защиту поверхностей строительных конструкций следующими способами:

  • пропиткой (уплотняющего типа) материалами с повышенной химической стойкостью;
  • оклейкой пленочными материалами;
  • применением разнообразных лакокрасочных, мастичных, оксидных, металлизированных покрытий.

По сути, данные СНиП позволяют использовать все описанные нами способы защиты металлов от ржавления. При этом правила оговаривают состав конкретных защитных средств в зависимости от того, в какой среде располагается строительное сооружение. С этой точки зрения среды могу быть: средне-, слабо- и сильноагрессивными, а также полностью неагрессивными. Также в СНиП принято деление сред на биологически и химически активные, на твердые, жидкие и газообразные.

Коррозия представляет собой процесс разрушения поверхности металла в результате взаимодействия с окружающей средой. Чтобы спасти поверхность автомобиля от ржавчины, существуют специальные антикоррозионные средства, с помощью которых проводится покрытие авто. И хотя они не могут полностью предотвратить процесс возникновения коррозии, но способны остановить его пагубное действие. Поэтому на любой автомобиль обязательно следует наносить покрытие от ржавчины. Можно провести обработку металла авто, как в специализированном салоне, так и своими руками.

Причины появления ржавчины

Специалистами доказано, что негативному воздействию коррозии подвержены все автомобили, независимо от производителя. Усугубляют ситуацию условия эксплуатации авто, имеющиеся на поверхности мелкие дефекты или царапины, а также противогололедные реагенты и другие химические соединения.

Выделяются несколько причин, от которых зависит скорость коррозийной реакции:

  • неправильный уход или эксплуатация автомобиля;
  • технологические ошибки, которые были допущены в процессе проектирования авто или его сложная конструкция;
  • тонкий слой нанесенного на поверхность заводского покрытия, особенно в таких труднодоступных местах, как днище.

Многие автолюбители не спешат наносить антикоррозийное покрытие, объясняя это лишней тратой денег. Но даже на новом автомобиле, без соответствующей обработки спустя 3 года эксплуатации, может возникнуть проблема с целостностью лакокрасочного покрытия. И тогда краска и лак станут не способны защитить слой металла и на авто появятся очаги ржавчины.

Лучше затратить средства на приобретение антикоррозийного покрытия и выполнить всю работу своими руками, чем впоследствии проводить кузовной ремонт автомобиля, пытаясь залатать образовавшиеся дыры.

Попустительское отношение к состоянию автомобильного кузова часто приводит к необходимости применения сварочных работ по его восстановлению.

Основные виды антикоррозийных средств

Антикоррозийное покрытие представляет собой состав, который наносится на поверхность автомобиля и препятствует возникновению ржавчины. Выделяются две основных группы средств, при помощи которых можно обработать поверхность металла:

  • битумный антикор – в него могут быть добавлены добавки металлов;
  • средства на основе восков, в которые могут вводят ингибиторы коррозии и увеличители прочности металла.

Также во все составы помимо антикоррозийного компонента добавляются материалы, направленные на выталкивание влаги.

Антикоррозийное средство выбирается в зависимости от типа ржавчины, которая может быть химической (воздействие на кузов кислорода или его соединений) и электрохимической (контакт с электролитами). Перед тем как наносить антикоррозийное покрытие своими руками, необходимо выбрать соответствующий препарат. Все имеющиеся на современном рынке средства разделяются в зависимости от состава, места и способа нанесения.

Для внешних поверхностей кузова или других легкодоступных частей авто выделяются следующие средства:

  • жидкий прозрачный пластик – не отличается механической стойкостью, поэтому его не рекомендуется применять как основное средство защиты кузова;
  • битумная мастика – произведена на основе синтетических и битумных смол с отработкой (из технических масел), направлена на защиту поверхности и консервацию металла;
  • на основе каучука или ПВХ (каучуковый компонент выступает в качестве активного вещества) – каучуковый антикор считается наиболее долговечным из всех представленных средств, по своему составу он схож с резиной, и часто на заводах наносится именно прозрачный каучуковый слой.

Для внутренних поверхностей или скрытых частей используются:

  • не высыхающие средства, сделанные с отработкой – этот бесцветный жидкий антикор не высыхает после его нанесения, а также в процессе эксплуатации автомобиля, и средства с отработкой заполняют мельчайшие трещины или царапины;
  • на парафиновой основе – после своего высыхания образуют на поверхности эластичную пленку, которая сохраняет свои свойства даже при резких перепадах температуры.

Требования к хорошему антикору

Многие автовладельцы, особенно те, которые столкнулись с проблемой ржавчины впервые, не могут определиться, какой антикор лучше. Существуют определенные требования, которые предъявляют ко всем средствам, направленным на защиту от коррозии. И чем больше состав им соответствует, тем лучше будет его действие. Поэтому перед тем, как приобрести антикор, следует ознакомиться с существующими требованиями.

Средства, предназначенные для обработки скрытых частей автомобиля, должны:

  • обладать однородной структурой;
  • краска и бесцветный лак после такой обработки должны сохранять свой первоначальный вид;
  • иметь высокие адгезивные свойства;
  • не иметь резкого запаха;
  • пропитывать все имеющиеся трещины или повреждения, даже в местах, подверженных коррозии;
  • обладать способностью к вытеснению накопившейся влаги;
  • образовывать на поверхности металла устойчивую к механическому воздействию и эластичную пленку.
  • способен защитить поверхность от действия электролитов;
  • быть устойчивым к воздействию частиц, поднимающихся с дорожного покрытия (гравий, песок или мелкие камушки), чтобы краска и лак не повреждались во время езды по дороге.

Материалы, используемые при антикоррозийном покрытии, являются прекрасной защитой кузова, делая его менее восприимчивым к внешнему воздействию. Нанесенные на поверхность краска и лак после такой обработки будет защищены от коррозии на протяжении нескольких лет. Чтобы выбрать лучший антикор, важно учитывать перечисленные требования. Причем не всегда средства, которые им соответствуют, относятся к дорогостоящим продуктам.

Как провести обработку самостоятельно?

Чтобы сэкономить приличную сумму, можно нанести антикоррозийное покрытие своими руками. Такой слой поможет предотвратить появление ржавчины, а краска и лак будут сохранять свой внешний вид на протяжении от 1 до 3 лет.

Перед тем, как наносить антикоррозийное покрытие на авто своими руками, необходимо выполнить подготовительные работы:

  • потрескавшаяся краска или лак, а также очаги ржавчины удаляются;
  • автомобиль нужно тщательно вымыть теплой водой, в том числе и в труднодоступных местах;
  • все остатки воды должны быть удалены;
  • пороги промываются и тщательно высушиваются;
  • с дворников лучше снять щетки – обработка этих элементов из некачественной резины приведет к их разъеданию;
  • сиденья, педали и руль в салоне следует накрыть тканью, чтобы в процессе работы их не испачкать.

Стоит добавить, что краска в сравнении с резиной, способна выдержать любые антикоррозийные обработки.

После совершения всех подготовительных операций, можно приступать к выполнению антикоррозийной обработки своими руками. Перед обработкой своими руками следует внимательно изучить инструкцию, чтобы соблюдать температурные условия и учитывать особенности нанесения.

Обработку кузова антикоррозийным составом удобно проводить специальным пистолетом, который продается в комплекте с антикором или отдельно. Особое внимание необходимо уделять днищу, поскольку эта самая обширная и наиболее подверженная воздействию ржавчины часть кузова.

Материалы в труднодоступные места вводятся через имеющиеся заводские отверстия. Нанося антикор на поверхность авто, следует быть осторожным, чтобы не испачкать салон или не повредить контакты. Лучше удалять пятна такого средства, появившиеся в процессе обработки своими руками, сухой тряпкой.

Чтобы краска на поверхности долгое время сохраняла свой цвет, а на кузове не появлялась коррозия, проводить антикоррозийную обработку кузова следует регулярно.

Антикоррозионная защита маталла

[ Нажмите на фото
для увеличения ]

Условно технологии антикоррозийного покрытия металла можно разделить на заводские, недоступные вне специально оснащённого производства и методы защиты, которые можно применять без наличия сложного оборудования.

К заводским технологиям можно причислить горячее цинкование и алюминирование, электролитические, дермодиффузионные и газотермические способы нанесения защитных покрытий, фаолитирование, нанесение АБС-пластика. Защита металла порошковыми красками занимает промежуточное место: для этих работ необходимо специальное оборудование, хоть и не столь сложное.

Технологии

Огнезащита металлических каркасов зданий
При воздействии высокой температуры металлические каркасы зданий, состоящие из колонн и поперечных балок, быстро нагреваются

Порошковая окраска металла. Технология и оборудование
Порошковая окраска металла: на предварительно подготовленное металлическое изделие напыляется мелкодисперсный порошок

Анодное покрытие металла. За и против
Анодные покрытия даже будучи поврежденными или пористыми защищают металл подложки за счет их предпочтительного коррозионного разъедания

Пoтребнocть в применении антикoррoзийных пoкрытий металличеcких изделий и прoмышленных кoнcтрукций oгрoмна. Сoглаcнo oдним oценкам экcпертoв, в Рoccии в течение гoда ржавчина «cъедает» 20 - 30% гoдoвoгo объема производcтва черных металлов. По другим данным, ущерб от коррозии cоcтавляет 2 - 4% от валового национального продукта каждого гоcударcтва.

Дениc ВЕРШИНИН

Антикоррозийная обработка металличеcких изделий предуcматривает два этапа. На первом производитcя очиcтка поверхноcти от грязи и элементов первичной коррозии, на втором - покрытие поверхноcти тонким слоем другого, более стойкого к окислению металла (цинка, хрома, никеля и др.) или иного защитного материала, к которым относятся различные полимеры, краски, пасты, эмали и т.п.

В настоящее время наиболее современной технологией очистки металлической поверхности является ее песко-, или дробеструйная, обработка с помощью абразивно-струйного оборудования. К тому же процесс позволяет удалять с поверхности материала окалину, нагар и остатки старого покрытия (металлического или лакокрасочного).

Далее очищенную металлическую поверхность покрывают тонким слоем антикоррозийного покрытия . Сегодня существует несколько технологий нанесения металлического покрытия на различные стальные заготовки.

Для никелирования металлических деталей сложной конфигурации часто используют метод их электрохимической обработки, основанный на осаждении слоя используемого металла из раствора на поверхности изделия. Малогабаритные установки химического никелирования УХН-20 или -100, производимые ЗАО АКБ «Экспресс-Волга» (Саратов), или установка химического никелирования ГУ002М, производимая ООО «РПТИ-ЗАВОД» (Рязань), позволяют получать покрытия толщиной от 3 до 18 мкм. Производительность таких устройств составляет 0,2 - 6 м²/ч, а твердость получаемого покрытия достигает 950 кг/мм?.

Нанесение цинковых или алюминиевых покрытий можно проводить способом электродуговой металлизации , например, с использованием установки УЭМ компании ООО «Пневмотех-ника». В данную установку по специальным каналам непрерывно подаются две проволоки диаметром 1,5 - 3,2 мм, между концами которых возбуждается электрическая дуга. В результате происходит плавление металлов. С помощью сжатого воздуха

расплавленный металл распыляется в виде жидких капель на поверхности напыляемой детали.

Установка позволяет наносить различные металлические покрытия (в т.ч. состоящие из двух металлов) по ГОСТу 9-304-81 с мощно-стью распыления 9 - 30 кг/ч в зависимости от используемого материала. Толщина напыляемого слоя достигает 0,5 - 15 мкм, прочность сцепления - 3 – 5 кг/мм?, а пористость покрытия составляет 5 - 20%. Срок службы получаемых изделий увеличивается до 50 лет, что значительно сокращает затраты на эксплуатацию и ремонт различных металлоконструкций.

Представим еще один агрегат, действующий по тому же принципу. Это установка электродуговой металлизации тянущего типа УЭМ-400ТП. Онатакже позволяет восстанавливать изношенные поверхности, декоративную отделку, наносить жаростойкие покрытия и т.д. УЭМ-400ТП можно использовать при механизированном процессе напыления. В данном случае установка должна быть установлена на суппорт токарного станка или другое устройство, обеспечивающее необходимое относительное перемещение и металлизируемой поверхности, и самого аппарата.

Методы газопламенного и плазменного напыления защитного слоя на стальную поверхность имеют схожие принципы со способом электродуговой металлизации. В их основе лежит распыление расплавленных металлов сжатым воздухом. При этом в случае газопламенного метода плавление материалов достигается в пламени газовой горелки (рабочие газы ацетилен, пропан или водород), а в случае плазменного метода - в потоке дуговой плазмы (рабочие газы аргон или азот).

Процессы напыления хорошо поддаются автоматизации. На российском рынке доступно оборудование как зарубежных, так и отечественных производителей. Среди них - ООО «Нейтрино», ООО «Термал-Спрей-Тек», ООО «Центр защиты от коррозии «ЭГО» (ООО «ЦЗК «ЭГО») и др. Характеристики как получаемых покрытий, так и оборудования в целом схожи.

ЗАО НПП «Высокодисперсные Металлические Порошки» (Екатеринбург) предлагает метод «холодного» цинкования стальных изделий . В его основе - использование лакокрасочных композиций, содержащих в качестве пигмента высокодисперсный порошок цинка. Помимо этого, компания предлагает широкий выбор покрытий (Цинотан, Цинол, ЦВЭС, ЦИНЭП, ЦИНОТЕРМ и др.), имеющих различную полиуретановую, полимерную, кремнийорганическую, эпоксидную и др. основу.

Кроме цинконаполненных материалов, предприятие производит композиции на основе алюминиевой пудры, а также железной слюдки. Композиции наносятся на поверхность стальных изделий традиционными лакокрасочными способами в интервале температур от –15°С до +40°С. Время высыхания одного слоя при 20°С составляет не более 30 минут. Образующиеся покрытия с высоким содержанием цинка дают не только эффективную катодную защиту стали, но и барьерную, характерную для обычных лакокрасочных покрытий.

Согласно заявлениям специалистов компании, при окислении металлического порошка в микропорах защитного покрытия образуются нерастворимые продукты коррозии цинка, препятствующие доступу коррозионно-активных агентов к стали. В результате скорость окисления цинка в цинконаполненных покрытиях ниже по сравнению с горячеоцинкованными покрытиями, а срок их службы, соответственно, более длительный. Прогнозируемый срок службы таких систем защиты, в зависимости от условий эксплуатации, составляет от 8 до 20 лет и более.

Несомненно, традиционный способ защиты стальных изделий от коррозии - нанесение лакокрасочных покрытий (краски, пасты, грунт и т.п.). Он продолжает пользоваться популярностью.

На сегодняшний день все больше потребителей стальных изделий обращаются в компании, специализирующиеся на защите от коррозии. Такая практика, во-первых, позволяет осуществлять действительно качественную обработку металла с привлечением высококвалифицированных специалистов и высокотехнологи-ческого оборудования. Во-вторых, автоматизация процессов очистки поверхности изделия и нанесения на нее защитного слоя значительно увеличивает производительность труда и приводит к снижению финансовых затрат.

Каждый из описанных методов находит свое применение в той или иной области. А совокупное использование нескольких методов защиты позволяет достичь максимальной защиты стальных изделий от коррозии.

Характеристики оборудования и антикоррозийных покрытий

Метод

Электродуговой

Газопламенный

Плазменный

Характеристики покрытия

Пористость, %

Прочность

сцепления с основой (адгезия), кг/мм?

Толщина слоя, мм

Характеристики оборудования

Потребляемая мощность, кВт

Расход газов, л/мин

ацетилена:

10 – 30 кислорода:

Производительность, кг/ч